
Механический расчет труб ПротекторФлекс®

Расчет выполнен для прокладки труб в траншее и методом ГНБ.

Методология расчетов

Методика выбора диаметра трубы

При выборе диаметра трубы следует придерживаться правила:

$$D > D_{\rm p} = K_{\scriptscriptstyle
m T} \cdot d + 2 \cdot e$$
 (1)
$$D_{\scriptscriptstyle
m BH} = D - 2 \cdot e, \qquad (2)$$

где:

D (мм) – принятый внешний диаметр трубы;

D_n (мм) – расчетный внешний диаметр трубы;

 K_t (-) — коэффициент;

d (мм) — диаметр внешней оболочки кабеля, укладываемого в трубу;

е (*мм*) – толщина стенки трубы;

D_{вн} (мм) – принятый внутренний диаметр трубы.

Входящий в (1) безразмерный коэффициент $K_{\rm T}$ равен 1.5 при закладке одного кабеля в трубу, равен 3.0 при закладке трех кабелей в трубу. Остальные случаи не являются типовыми и рассматриваются отдельно в расчетной части.

Входящая в (1) толщина стенки трубы е определяется в ходе механических расчетов на основе основной информации об условиях прокладки трубы и опирается на понятие кольцевой жесткости SN.

Внутренний диаметр **D**_{вн}, определяемый по (2), при длине трубного участка более 5 м должен быть не менее 100 мм при прокладке одного кабеля в трубу, не менее 150 при закладке трех кабелей в трубу. Остальные случаи не являются типовыми и рассматриваются отдельно в расчетной части.

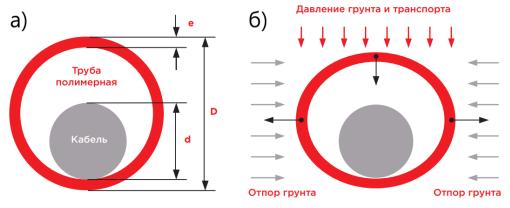


Рис.1. Полимерная труба с одним кабелем: без давления грунта (а), с давлением грунта (б).

Методика выбора кольцевой жесткости трубы от веса грунта и транспорта

Достаточная кольцевая жесткость трубы при прокладке в траншее:

$$SN = 0.458 \cdot q - 0.0075 \cdot E'_s,$$
 (3)

где:

SN ($\kappa H/m^2$) — кольцевая жесткость трубы;

 $q (\kappa H/m^2)$ — вертикальная нагрузка на трубу;

 E_s' (МПа) — секущий модуль грунта.

Секущий модуль грунта E_s' зависит от типа грунта, которым засыпается труба, и степени его уплотнения. Как правило, для этих целей используется песок, и тогда рекомендуется использовать данные табл.1, основанные на обобщении опыта ряда европейских стран. В остальных случаях рекомендуется принимать $E_s' = 0$.

Вертикальная нагрузка на трубу q может рассчитывается поразному в различных условиях прокладки:

1. зеленая зона:

$$\boldsymbol{q} = \boldsymbol{q}_{\Gamma}$$
 (4.1)

2. нагрузка от грунта и автотранспорта:

$$q = q_{\Gamma} + q_{AT} \qquad (4.2)$$

3. нагрузка от железнодорожного транспорта:

$$m{q} = m{q}_\Gamma + m{q}_{
m MT},$$
 (4.3) где:
$$m{q}_\Gamma \ (\kappa H/m^2) - {
m Harpy3}$$
 — нагрузка от веса грунта;
$$m{q}_{
m AT} \ (\kappa H/m^2) - {
m Harpy3}$$
 — нагрузка от ж/д транспорта.

Нагрузка от грунта может быть определена методом «в насыпи» или «в траншее» (нагрузка будет меньше из-за арочного эффекта). Рассмотрим наиболее неблагоприятный случай, когда на трубу давит весь столб грунта высотой H:

$$q_{\Gamma} = \rho_{\Gamma} \cdot \mathbf{g} \cdot H, \tag{5}$$

где:

$$ho_{\Gamma}$$
 (m/м³) — удельный вес грунта (обычно не более 2 т/м³); $g = 9,807$ (м/с²) — нагрузка от автотранспорта; — глубина расположения трубы под землей.

В случаях, когда высок уровень грунтовых вод, следует использовать меньшие значения удельного веса грунта, однако, пренебрежение этим эффектом для получения повышенных нагрузок на трубу и выбора ее с должным запасом.

Нагрузка от транспорта может быть определена как:

$$q_{\text{aT}} = \frac{186}{2.7 + H}$$
 (6)
$$q_{\text{KT}} = \frac{275}{2.7 + H}$$
 (7)

Табл.1. Рекомендации по выбору секущего модуля для песка, которым засыпана труба.

Глубина засыпки <i>Н</i> , м	Состояние песка, которым засыпана труба			
	Неуплотненный	Уплотненный вручную	Уплотненный механически	
	Секущий модуль грунта E_s^\prime , МПа			
1	0,5	1,2	1,5	
2	0,5	1,3	1,8	
3	0,6	1,5	2,1	
4	0,7	1,7	2,4	
5	0,8	1,9	2,7	
6	1,0	2,1	3,0	

Методика выбора предельного усилия тяжения

Достаточное предельное усилие тяжения для каждой трубы может быть определено как:

Табл.2. Значения эквивалентного диаметра плети из **N** труб (каждая труба диаметра **D**).

– длина участка, выполненного методом ГНБ (м).

Число труб N	D экв, м
1	1
2	2
3	2.15
4	2.41
5	3
6	3
7	3
8	3.3
9	3.83

 L_{rho} (M)

Табл.3. Рекомендации по выбору коэффициента в зависимости от сценария бурения.

	Грунт	Характеристика грунта
2.0	Довольно мягкий	Мягкий сланец, очень мягкий известняк, мел, каменная соль, гипс. Мерзлый грунт, антрацит. Обыкновенный мергель. Разрушенный песчаник, сцементированная галька, каменистый грунт
1.5	Довольно мягкий	Щебенистый грунт. Разрушенный сланец, слежавшаяся галька и щебень. Крепкий каменный уголь. Отвердевшая глина
1.0	Мягкий	Глина (плотная). Мягкий каменный уголь. Крепкий нанос, глинистый грунт
0.8	Мягкий	Легкая песчанистая глина, лесс, гравий
0.6	Землистый	Растительная земля. Торф. Легкий суглинок, сырой песок
0.5	Сыпучий	Песок, осыпи, мелкий гравий, насыпная земля, добытый уголь
0.3	Плывучий	Плывуны, болотистый грунт, разжиженный лесс и другие разжиженные грунты
0.1	Плывучий	Сильные плывуны

Применять при ГНБ трубы кольцевой жесткостью менее SN 16 кH/м 2 не рекомендуется, и поэтому все значения SN менее 16 кH/м 2 должны быть округлены в большую сторону до 16 кH/м 2 .

